
GPO PRICE $ 

CFSTI PRICE(S) $ 

Hard copy (HC) -3~ ea 
Microfiche (M F) \,5 

ff 653 July 65 

ON THE GENERATION OF PSEUDO= 
RANDOM NUMBERS FROM SEVERAL 

NON-UNIFORM DISTRIBUTIONS 
. 

TEXAS CENTER FOR RESEARCH 

3100 PERRY LANE, AUSTIN, TEXAS 



Ow 'IHE GENERATIm OF PSEUDO-RANDOM NWVIBERS 
FROM SEVERAL NON-UNIFORM DISIIIIBUTIONS 

Rosser J. Smith, I11 



1 

I 

Introduction 

In many applications, it is e i ther  costly o r  d i f f i cu l t  to  

secure a large random sample from a given statistical population. 

Consequently, it is often efficacious to  use some kind of numerical 

simulation, o r  Monte Carlo Method. This usually requires a source 

of so-called "random numbers." Producing these random numbers can 

be an inexpensive, simple process, thus fac i l i t a t ing  the solution of 

one's problem o r  investigation. 

1 

I t  is the purpose o f  this paper to  present several convenient 

methods for  generating random numbers representing several of the 

fundamental statistical distributions. Most of the methods t o  be 

shown here are readily adapted t o  automated computation, and several 

w i l l  be given which are suitable for  manual computation, where only a 

moderate sample s i x  is required, 

of the methods require a supply of random numbers having a uniform 

distribution over the interval [0,1). 

It w i l l  be seen, however, that  most 

Several convenient methods for  the generation and tes t ing of 

uniformly distributed r a n d o m  numbers have been developed. 

methods are described elsewhere [2,3,10] in  detail', and so the balance 

of t h i s  paper w i l l  be devoted t o  methods for  generating random numbers 

from other distributions. 

These 

1) These numbers are, s t r i c t l y  speaking, pseudo-random, because some 
s o r t  of deterministic process generates them. 

2) The generation, testing, and application of random dig i t s  are 
described in [9]. 
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I1 

Methods for  Generating Random Numbers 

Since it is a relatively simple matter t o  generate uniformly 

distributed random numbers, it would be worthwhile to  consider 

methods for  transforming them into random numbers from other d i s t r i -  

butions. That is, one seeks a transformation T which u t i l i zes  a 

s e t  U = { y , u 2 , .  . . ,un> 

a set X = T(U) = {x ,x ..., xml of independent variates from some 

other distribution. The transformation T is often found by equating 

the distribution functions of X and U. 

of independent, uniform variates t o  produce 

~ 1 2’ 

Suppose Y is a random variable with distribution function H,  

and suppose one seeks a random variable Z = z(Y) which w i l l  have 

distribution function K. That is, one requires that 

K(z) = H(Y1 

ibr every acimissabie vaiue or’ Y, so that 

is the desired transformation. Thus, i f  one can invert the d i s t r i -  

bution function K ,  it is possible t o  find a function of the random 

variable Y which w i l l  have the desired distribution. 

As an example, suppose it is desired t o  produce a random 

variable X with an exponential density function, 



k(x) = ee-ex, 

3 

(3) 

where x > 0 and e > 0. The distribution function of X is ,  therefore, - 

(4) -ex K(x) = 6 k(t)dt  = 1 - e 

Here, l e t  Y denote a random variable with a uniform distribution over 

[ O , O ,  so that the density function of Y is 

and the distribution function of Y is 

To find the desired function z so that X = z(Y) w i l l  have the 

exponential distribution, let  

If one wishes t o  use (8) many times, the time saved by using u, 

For th i s  reason, it is rather than 1 - u, could be considerable. 
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interesting to  note that u and 1 - u are identically distributed. 

This is  seen from a comparison of the Moment Generating Functions of 

u and 1 - u,  respectively. That i s ,  the Moment Generating Function 

of u is 

Mu(t) = E[eut] = I: eut du = (et - 1)J t ,  

where, for  some h > 0 ,  it is required that  -h < t h. Then, f o r  

1 - u, 

( t )  = E[e(l-u)t] = E[e t e u(- t ) l  Y -u 

t e-t-l - e t -1 t = e MU(-t) = e -- - -t t ’  

so %It) = y - u ( t ) ,  and therefore u and 1 - u are  identically 

distributed. Thus, (8) can be rewritten as 

I t  is to  be noted that inverting the distribution function is 

not always efficacious. 

uniform variate u to  produce a standard normal variate X. As in 

(7), one equates the distribution functions, 

As an example, suppose one seeks t o  use a 
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Clearly th i s  does not provide a simple way t o  write X = x(u). One must 

turn t o  numerical methods for such a case as this .  (A numerical method 

has been described [8] t o  solve the above; it requires a f a i r ly  elabo- 

rate set of Chebyshev polynomials and requires more computation t i m e  than 

the methods to  be given here.) 

~ 



6 

I11 

The Generation of  Nom1 Variates 

The nonnal distribution plays a fundamental role in the theory 

of statistics. A random variable X having this distribution, with 

mean p and variance u2, has desnity function 

1 2 2  f(x) = -exp[-(x - p) /(%a )], -00 < x O D ,  

G 

with -00 e IJ e 00 and u2 > 0. A very useful variate occurs for ,LI = 0 

and u2 - 1 and is said t o  be standardized. I t  is easily shown 

[7, p.1241 that i f  X is a standardized nonnal variate, then Y = uX + p 

is a normal variate with mean and variance u . Consequently, i f  one 2 

can generate a standardized normal variate, it is a simple matter t o  

secure a normal variate with mean p and variance u2, and so no loss 

of generality w i l l  occur irk considering only standardized normal variates. 

Since one is often interested in producing normal variates in the 

most expqdient way, the central limit theorem has great appeal, 

be stated as follows [7, p.1491: 

It can 

2 "Let f(x) be a density with mean p and f in i t e  variance u . 
n 

Let 

be the mean of a random sample of size n f r o m  f(x).  I f  the random 

variable yn is defined by 

6 a x n - p  
Yn U 
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then the density of yn approaches the n o m 1  with mean zero and unit 

variance, as n increases without bound." Consequently, for sufficiently 

large sample size n ,  one can produce standardized nonnal variates (11) 

from any variates X with mean p and finite variance u . If u is 2 

a uniform variate with density function (5) , then l.i = 1 /2  and 0' = 1 /12 ,  

and (11) becomes 

En - 1/2  
P 6 

yn 1/m 
n 

= tG7ii (21 
i=l 

ui - n) 

n 
1 
is1 

so that for  large n,  

and variance n/12. I t  has been noted [8] tha t  n = 12 is a convenient 

&&e1, because then the desired uni t  variance would occur easily. 

Testing [8],  however, has shown that th i s  value is too small; while for 

n - > 50 it has been observed that the form of f(x) 

tlleoresii hes l i t t l e  effect CII? the fidelity nf the zppr~ximatinn. 

figure below i l lus t ra tes  the distribution of 100 samples of size n = 10 

from the uniform distribution (5). 

ui has a n o m 1  distribution with mean n/2 

in the central limit 

The 

1) In [8],  it is noted that the IBM 704 requires about five m i l l i -  
seconds to produce a single n o d  variate from twelve uniform 
variates using this method. 



I 

Because of i ts  time consumption and poor accuracyr the central 

l i m i t  theorem does not find wide application in the generation of 

n o w  variates. 

however, it can be very useful, o r  one can consult tables such as [9]. 

For those who require only moderate sample size 

One can approach the problem of securing normal variates from 

uniform ones in a more elegant and accurate manner than that shown 

above. 

Suppose that ( y r u 2 )  denotes a pa i r  of independent, uniform 

variates with density function (5) .  Consider the circle 

2 2 2  x 1 + x 2 = P ,  

with 
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so that e = Arctan x2/x1. 

Let p = -2 In ul 

and e = zn u2 , 

- P / 2  so that u1 = e 

and u2 = e/2n . 
The density function of p is 

so that  p has a Chi-square distribution with two degrees of freedom. 

Now, since 

and 

it follows tha t  

and 

so that 

and 

2 2  
1 x + x2 = p = -2 In u1 

Arctan x2/% = 8 = 

1/2 X, = (-2 In u,) 
L A. 

x2 = (-2 In ul) 1/2 

2 u1 = exp[-l/2(x1 + 

u2 = 1/(2s) Arctan 

cos 2r u2 
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From this, it follows that the j o i n t  density function of x1 and x2 

-(xl 2 2  + x2)/2 -(x21/2) -(x;/2) 
e e 

f 
e a 

so that x1 and x2 are independent, standardized normal variates. 

The method (14) shown above w a s  originally proposed by Box and 

W l l e r  El]; and i f  one's computing facilities can accurately and 

speedily evaluate the square root, logarithm, and trigonometric 

functions needed, the method is  very satisfactory . This method is 

especially valuable t o  one who needs only a few normal variates and 

proposes to  use published tables and a calculator. 

L I U ~  !lc&od is s c a r a t e  i~ the tails of the rromal distribiition. 

1 

Note also that 

4.l.:- ....A& 

by now, it has been observed that  the standardized normal 

population is not easily simulated. 

which are relatively easy to  simulate, such as the familar uniform 

distribution (5). I t  would be very helpful i f  there were some way 

t o  decompose a complicated distribution, such as the standardized 

There are, however, distributions 

1) In [8] it has been observed that the IBM 704 would require about 
6 . 6  milliseconds t o  produce a normal variate with th i s  method. 
Note tha t  x1 and x2 can be combined so that  Z = 2-1/2(x1+x2) = 

(-2 In ul)'/' Sin(n/4)(89+1) is a standardized normal variate. 
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nonnal one, into a set of simpler ones, for  then one could simulate any 

complicated distribution by simulating its simpler components. 1 

Let U denote the set of a l l  distribution functions, with x 
some random variable, 

U = {Gi(x)Ii=1,2 ,..., m,* . . }  , 

and le t  R denote a set of real numbers 

R = {ailai - P[X'gi(x)]} , 

where X gi(x) means "X has density function gi(x) and d i s t r i -  

> 0 and a +a +...+ am+ ... = 1. - 1 2  bution function Gi (x) .'I Thus, ai 

Thus, i f  FEU is some distribution function of X, then 

F(t)  = P[X - t] 

= c P[X 5 t, x - gi(x)l  
i 

= z P[X 5 t l x  - gi(x)l*P[x - gi(x)l 
i 

= 1 ai Gi(t) 
i 

and thus the density function of X can be written2 as 

I I 

f(x) = F (x) = C ai Gi(x) = c ai gi(x) 
i i 

1) 

2) 

See [4,5] for  additional information on t h i s  subject. 

In the case of a discrete random variable, one would use a 
difference 
differentation to  produce the same result  (15). 

g(xi) = G(xi) - G(xi-l) instead of the indicated 
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In practice, one tries t o  select the elements of U which w i l l  allow 

there t o  be more than a single nm-zero This w i l l  be done below, 

where (15) w i l l  be used to  approximate the standardized normal density 
ai. 

function 

Figure 1 is a sketch of the graphs of f (x) and g,(x) , where 

and g,(x) is the density function of 

where u1,u2 and u3 are independent, u n i f o n  variates with density 

function 

- 3 < x <  

variate ; 

(5). Note that g,(x) closely approximates f(x) for 

3. 

some sort of correction is needed. 

I t  is clear, however, that (18) is not a true normal 
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Since (18) is generated easily, it is desirable that it be used as 

often as possible. That is, one desires al in (15) to  be as large as 

possible. One seeks the largest al such that 

3 
/-$f(x) - algl(X)l& L 0 

is minimized. This reduces to  minimizing 

, for  -3 < x < 3. That is, since (19) implies that  

one simply finds the minimal value of the rat io  

this value to  al. 

f(x)/gl(x) and gives 
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for  1x1 = 0,1,2. The minimwn value of the ra t io  occurs for  1x1 = 2 ,  

so that - 16e-2 0.86385 54642 , a 1 - z -  

and one can use (18) about 86% of the time t o  simula,e a standardized 

normal variate. The correction w i l l  be necessary with probability 

1-al - - Jz;; - = 0.13514 45358 , 
Jz;; 

o r  about 14% of the time. 

Note that !y,[f(x) -algl(x)]dx = 1-al 

can be called a "residual" density function. 

f (x) -algl(x) 

The graph of 

Note that  the "residual" is sketched in  Figure 2 .  

density function can be well approximated by g2(x), the (triangular) 

density function of X = 1.s(y+U2-1), 
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Note that (19) is easily generated. As with (18), one would l i ke  

to  use it as often as possible. 

so that  

I t  is therefore desirable t o  find a2 

is minimized for  -1.5 < x < 1.5. That is, one m u s t  find the minimal 

and assign it t o  a2. To find x such tha t  -1.5 c x e 1.5 and 

f(x) - a,81(x) 
asr [ g2(x) ) =  O ’ 

it is expedient t o  use a numerical method t o  find tha t  

0.87386 312884, 2.0. 

a2 = 0.11081 79673; and (19) can be used about 11% of the t i m e  as a 

standardized nonnal variate. 

1x1 = 

The first value provides the minimum, and so 
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Figure 3 is a sketch of f(x) - algl(x) - aZgZ(x) . Note that 

= 0.02532 65685 

so that one now has the "residual" density function 

As 

simple variates whose densities would sat isfactor i ly  approximate 

over the interval -3 x < 3. Consequently, a rejection technique w i l l  

be employed t o  simulate g3 over this interval. 

g3 is multimodel, it would be tedious to  search for one o r  more 

g3 
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Over the finite interval -3 < x < 3, note tha t  the 

of g3(x) is  approximately 0.3181471173, and therefore 

and y = 0.3181471173 u2, (x,y) is  distributed uniformly 

maximum value 

if  x = 6ul-3 

over the rectangle 

(with area A = 1.9088827038) enclosing the relevant portion 

of the points (x,y) comprising the rectangle, x can be taken as a 

variate with density function g3 only i f  y - < g,(x) ; because only those 

points (x,y) lying on and under the curve 

statements about X. Consequently one generates the points (x,y) un t i l  

y g3(x) , and then with probability a3, one lets X = x. 

g3. hbreover, 

g3 contribute t o  valid probability 

1 

The probability a4 associated with generating x 3 is 

(20) relatively small, a4 = l-%-az-a3 = 0.02532 65681 - a3. 

Consequently, it is reasonable t o  use (14) for the t a i l s  of the 

distribution. Since the variates secured by (14) are independent, 

standardized, normal variates 
2 

OD -t /2  

3 4 5 -  
d t  e = P[ lXl  - > 31 = 2 1 a4 

so that f r o m  (20) one obtains 

* 0.02262 677245 . a3 

Thus, for  

least one of them has absolute value ‘greater than or  equal to  three, 

and then the appropriate one is taken as X. 

1x1 > 3, one generates x1 and x2 according t o  (14) unt i l  a t  

The probability that a pair  

1) a3 w i l l  be calculated later. Note that  the probability that a pa i r  

0.5238666566, o r  about two uniform variates w i l l  be needed for each 
acceptable X when th i s  rejection technique is used. 

(x,y) w i l l  provide an acceptable X is (1.908882704)-1 = p3 - - 
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and then the appropriate one is taken as X. The probability that  a pair  

(u,,uz) w i l l  provide a t  least one normal variate 1x1 - > 3 is 

a4(Z-a4) = 0.00539 2421227, 

so that one can expect t o  produce about 185 pairs 

a t  least one standardized normdl variate X when (14) is used. 

(ul,u2) t o  secure 

According t o  (15) , then, f (x) can be written as 

f(x) = + a282 (XI + a3g3W + a4g4(x) 9 

and the desired variate X is generated according to  the following rule: 

1. 

2. 

3. 

With probability al = 0.08638554642, let  

x = 2(u1+u2+u3-1.5) 

With probability a2 = 0.1108179673, let  

With probability a3 = 0.02262677245, generate pairs (x,y) unt i l  

y 5 g3(x), and then le t  X - x, where x = 6ul-3 and 

y = 0.3181471173~~ with 

2 
15.75192787e -x 12-4. 263583239(3-x2) -1.944694161 (1.5- Ix I ) 

for 1x1 < 1 
2 

g3 (x) = 15.75192787e -x '2-2.1317916185 (3- I X I  ) -1.944694161 (1.5- I x 1 ) 
for  1 - < 1x1 < 1.5 

2 
15.75192787e -x /2-2.1317916185(3-lx~)2, for  1.5 1. 1x1 < 3 

0, for 1x1 2 3 
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4. With probability a4 = 0.002699796063, generate pairs (xl ,xz) 

un t i l  either lxll o r  lxzl is greater than o r  equal t o  three, 

and then let  that  one be X, where 

= (-2 In x2 sin 2n u2. and 

To obtain some idea of the efficacy of th i s  technique it is 

helpful t o  calculate the expected number E[N] of uniform variates 

needed to  produce a single normal variate. To do so, l e t  ni denote 

the number of uniform variates one expects to  use in the 

of the pmcess, i = 1 ,..., 4. 

ith step 

Then 

4 

= 4.079381839, 

so that one can expect to  generate about four uniform variates fo r  

each normal variate produced, 1 

The above technique has been shown i n  de ta i l ,  applied here to 

the standardized normal distribution. 

any distribution. 

handy t o  compile a catalogue of density functions of relatively easily 

generated variates,  such as those used in  steps 1 and 2 of the above 

technique. 

In theory, it can be applied to  

I t  can be seen, however, tha t  one would find it 

1) One could compute the expected computing time for  each normal variate 
by replacing ni with ti, the expected computing time for the 
ith process. 
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IV 

Other Distributions 

1. The Chi-square Distribution 

If X is a random variable with the Chi-square Distribution with 

n degrees of freedom, it has density function 

(n/2) -1 e-~/2 

r(n/2) 2"'' 
X f(x) = 

where x > 0 and n = 1,2 ,... [7 ,  p.2261. This is a special form of 

the Gamna Distribution [7, p.1261. 

For this distribution, there are several special cases of n to 

observe before mving to an asymptotic distribution. 

Recall that in obtaining (14) it was found that X = -2  In u 

had a Chi-square Distribution with n = 2 .  Consequently, if 

X = -2 ln(u,u,. . .um) (22) 

tnen X has a Chi-Square Estributim with ii = 2; [7, p.2441. mas,, 
(22) can be used to generate chi-square variates with even degrees of 

freedom. 

The square of a standardized normal variate has a Chi-square 

Distribution with n = 1 [7,  p.2431. Thus, if Y is a standardized 

normal variate which is independent of u1 ,u2,. . . ,u then using (22) , my 

X + Y2 has a Chi-square Distribution with 2m + 1 = n and can be used 

to generate chi-square variates with odd degrees of freedom. 

If one has a supply of standardized normal variates Y, there is 

a convenient method for generating chi-square variates X having fairly 



2 1  

k 
1 
2 
3 
5 

10 
1 2  
13 
14 
15 

large degrees of freedom n. It  is the so-called Wilson-Hilferty 

transformation [6,11] : 

IEI 
0.03443 

.01218 

.00692 
,00353 
,00148 
,00119 
.00109 
.00103 
.00092 

o r  x = n [ Y f i m  + 2/(9n) + 1 1 ~ .  (24) 

I t  has been found [6] tha t  (23) converges t o  a normal variate for  
1 smaller n than the familiar transformation 

Y = r n - r n  

o r  

x = 1 /2 [Y = 

which is often seen given for  n > 25. In the case of (23), a numerical 

From consulting the table, one can decide a t  which value of n 

he w i l l  cease using (22) and use (23) .  

1) See: Fisher, R. A. Stat is t ical  Methods for  Research Workers 
(Tenth Edition), Oliver 6 Boyd, London (1948) ¶ P.81. 
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2. The Beta Distribution 

If X is a random variable having the Beta Distributiun, with 

parameters p and q,  then X has density function 

f(x) = r* r p +  r q +  XP(1 - x)q 

where 0 - < x < 1, p > -1, and q > -1 [7, p.1291. To generate X compute 

and 

until S + t < l ,  - 

and then x = s/(s + t) 

has the desired Beta Distribution. 

To verify (27), let z = s + t so that 

s = xz 

and t = z ( l  - x) 

fromwhich one can obtain 

r (  + + 3 ) x p + l z p + l  
u1 = g’rTp9.-zr 

and 
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To find the desired joint distribution of X and Z, it is necessary to 

compute J (3 ,u2/x, z) , where 

so that the joint density of X and Z is 

Restricting 0 1. Z 2 1 according to (26), the density function of X is 

1 f(x) = Io h(x,z)dz 

= *.XP(l - x) 9 f 0  1 z P + 9 + 1  dZ r p +  r q +  

t ,*XP(l r p +  r q +  - xp, 0 L X  < 1, 

which implies, X has the proper Beta distribution. 

3. The F Distribution: 

If X is a random variable having the F distribution, with 

m and n degrees of freedom, then X has the density function 
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where x - > 0, m > 0, and n > 0. (In practice, m and n are positive 

integers .) 

There is a well-known transformation 

where y is a Beta variate with parameters p = (m/2) - 1 and 

q = (n/2) - 1, and x has the F distribution, with m and n degrees 

of freedom. 

Since a method for generating Beta variates has been given, it is 

convenient to rewrite (28) as 

Referring t o  (27), (29) can be written as 

= ns/(mt) 

Consequently, subject to x + t 2 1 in (26), or equivalently 

x has the F distribution with m and n degrees of freedom, 
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4. Student s t Distribution : 

If X is a random variable having Student's t distribution, with 

n degrees of freedom, then X has density function 

where -QD < x < QD, and n > 0. (In practice,  n is usually a positive 

integer.) [7, p.2331. 

I t  is easy to  show that  i f  X has Student's t distribution, 

with n degrees of freedom, then X2 has the F distribution with one 

and n degrees of freedom [ 7 ,  p.2331. Therefore, i f  Y has th i s  

F distribution, then the desired t variate X can be generated by 

x =  *4Y (31) 

The generation of the F distribution was discussed in the 

previous section, and so, referring t o  (30), Y can be generated by 

- l/n, 2 nn (u u, 

Consequently, the desired variate x is given by (31), o r  equivalently, 

- l /n  hi7 uu, 

subject t o  (33). 
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To assign the proper sign to  (34), it is  necessary that it be 

positive with probability 0.5. Referring to  ( S ) ,  it is seen that 

P[u3 - > 0.51 = 0.5 

so that P[u3 - 0.5 - > 01 = 0.5 

or  
u3 - 0.5 

P [ T q = 7 r q -  = + 1 3  = 0.5 

so that multiplying (34) by 

proper sign. 

(u3 - 0.5)/1u3 - 0.51 w i l l  a f f ix  the 

Recall that the three distributions in th i s  section are derived 

from the Beta distribution, and each of the generation methods 

essentially requires that  s + t 1 in  (26). Consequently one would 

desire the probability that  a point 

variate. 

from (26), 

(ul,u2) would provide a valid 

For the case of the Beta variate (23) t h i s  -,r&&ility is, 

P[s + t 5 11 = PIUl  5 w] 

1 w  1 = Io Io 1 dul du2 = Io w du2, 

where 

Consequently, after some rearranging, t h i s  becomes 



and it is t o  be noted that,  for  various values of p and q ,  (35) has 

been tabulated, because the integral is essentially the density function 

for  the Beta distribution, with parameters q and p + 1. 1 

To generate the F distribution, with m and n degrees of 

freedom, referring to  (28) and (35), p = (m/2)-1 

so that  (35) becomes 

and q = (n/2)-1 

which is associated with the Beta distribution, with parameters 

(n/2)-1 and m/2. 

The Student's t distribution, with n degrees of freedom, is 

obtained from the F distribution, with one and n degrees of freedom. 

Consequently, m = 1 in (36) ,  and 

for  the Student's t distribution. Here (37) is associated with the 

Beta distribution, with parameters (n/2) -1 and 1 / 2 ,  so that a published 

table could be consulted for this  case as well as the preceding two, 

(35) and (36).  

1) This distribution has been extensively tabulated as "The Incomplete 
Beta" distribution, so (35) can be evaluated with the aid of a table. 
See: Biometrika Tables For Statist icians,  Vol. I (E. S. Pearson and 

R. 0. Hartl-iEs), Cambridge University Press, London, 
(1954), pp. 142-156. 
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In certain cases, at leas t  one of the parameters in the Incomplete 

Beta integral is an integer, and th i s  can simplify an integral of the 

form 

When q is a positive integer, it is helpful t o  note that  

so that (38) can be written as the f i n i t e  ser ies  

If it occurs that p is apos i t ive  integer, repeated integration 

by par ts  w i l l  yield the following f i n i t e  series:  

P K p + q + l - K  P = l - C  @ + Z + l ) X  ( 1 - x )  
K=O 

I f ,  however, both p and q are positive integers, the repeated 

integration by parts can be used to  find that 

K p + q + l + K  (p + ; + 1) x (1 - x) 
P+9+1 

P - c  
K=p+l 

For nonintegral values of the parameters, one w i l l  have to  devise an 

appropriate technique f o r  (38) ,  or  perhaps a published table w i l l  be 

helpful. 



5. The Gama Distribution: 

If the random variable X has a Gamma Distribution with parameters 

A and k, then X has density function 

where x - > 0, k > 0, and A > 0. Note that for k = n/2 and = 1/2 ,  

this becomes the Chi-Square Distribution (21) with n degrees of 

freedom. The distribution (39) can be characterized by its Wntent 

Generating Function [7, p.129)], where t < A, 

Y[(t) = E[eXt] = (1 - $)-k , 

Recall that if Y is a random variable having the Exponential 

Distribution with mean E[Y] = l/X, then Y has density function (3 ) ,  

or 
h(y) = Ae -XY 

where y - > 0 and A > 0. This distribution is characterized by the 

following Moment Generating Function [7 ,  p.1191: 

If Y1 ,Y2,. . . ,yk are k independent random variables, each having 

density function h(y) above, then the Moment Generating Function for 

k 

1=1 
x = f :  Yi is given by [ 7 ,  p.1211: 
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k 

k t -1 = I I  (1-r) 
i=l 

which is exactly (40) .  Consequently, this X has density function (39).  

Recall that if ui has the Uniform Distribution over [0,1) , then 

( 91 
1 Yi = -r In ui 

0 

has the Exponential Distribution with density function h(y) above. 

Thus, where u1 ,u2,. . . ,uK are k independent random variables, each 

having the Uniform Distribution over [O,l], it follows that 

k 1 k 
x =  c Yi = -Tin I! u. 1 

i= 1 is1 

is a gama variate with parameters X and k. 

6 .  The Poisson Distribution: 

If the random variable K has the Poisson Distribution, then 

K has density function 

k 
kl 

-X X f(k) = e 

where x > 0 and k is a non-negative integer. Here, then, 

f (k)  = P[K = k]. 
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I t  is to  be recalled that  for some positive integer k 

k 

where X1, ..., Xn are independent random variables identically dis- 

tributed according to  (3) with parameter A, has the Gamma Distribution 

(39). I t  is interesting to  note the distribution of K ,  where K is 

defined according to  

K K + l  
Y K = c  X . < l < C  xi . 

i= 1 1 -  i= 1 

If H is the distribution function of K ,  then 

H(k) = P[K - < k] , 

and the density function of K is found by 

h(k) = H(k) - H(k-1) , 

where (45) is found from (39) according to 

P[K - > k] = 

= 1 - H(k - 1) . 
Thus 

(44) 

(45) 

(46) 

K K - 1  -Xy cw~ k+l K - dy 
h(k) = 

1 
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k -A x 
kr = e  

so that K has the Poisson Distribution. Thus, to generate pseudo- 

random numbers from (43), one can compute 

to be recalled that 
Yk in (44),  where it is 

has the distribution (3) ,  where 

variate. Thus, (44) is 
ui is an easily generated uniform 

and then k is distributed according to (43). This can be somewhat 

simplified to yield k of the form 

k+l k 
n u <e-'<, - ui. 
i-1 i-1 i (47) 

7. The Binomial Distribution: 

If the random variable X has the Binomial Distribution, then 

X has density function [ 7 ,  p.641 

n-x fW = k) PX (1 - p) , 



where x = 0,1,  ..., n, and 0 c p c 1. The distribu 

is 

- -  

X 
F(x) = 1 f ( t )  = t) pt (1 - p)n-t 

t = O  t = O  
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ion function of X 

n 

t=x+l 
= 1 - 1  t) Pt (1 - , 

where it is to  be noted that F(x) = P[X 5 x] , and f(x) = P[X = x] . 
Since X can take on only a f in i t e  number of values, it is feasible 

to  evaluate the distribution function F for  each admissable value, and 

fo r  each value of X, 0 1. F(x) 5 1. 

fo r  the generation of pseudo random numbers froM the Binomial 

Distribution. 

This suggests a simple technique 

1 

Let u denote a random variable having the Unifon Distribution 

over [0,1). Then for  every u, there exis ts  some value of X such that 

F(x - 1) 5 u c F(x) 

so that le t t ing  X = x w i l l  provide the desired pseudo random number. 

1) I t  w i l l  be noted tha t  the technique can be applied t o  any random 
variable which can take on only a finite number of values. 
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